Les Ambitions de T.É.C.
Lettre à Monsieur Emmanuel MACRON
Président de la république

Objet : "Développons des Universités de Technologie dans les villes moyennes !"
Lettre à Madame Françoise NYSSEN
Ministre de la Culture

Objet : "Ouvrir les outils de création au service d’une éducation aux médias en action !"
Lettre à Monsieur Jean Michel BLANQUER
Ministre de l'éducation

Objet : " Une Éducation Technologie au service de l’ENTREPRENDRE !"
Lettre à Pierre LAMARD et Yves LEQUIN
Auteurs, Professeurs des Universités

Objet : Ouverture des droits « La technologie entre à l’université ! »
Lettre à Madame Frédérique VIDAL
Ministre de l'enseignement supérieur

Objet : "Développons des Universités de Technologie dans les villes moyennes !"
Lettre à Monsieur Jean Michel BLANQUER
Ministre de l'éducation

Objet : "Un enseignement de Technologie pour 100% des élèves du lycée !"
Un #RéseauSocialProfessionnel qui nourrit un #BigDataÉducationNationale via un #GFU réunissant dans un réseau unique les écoles, collège et Lycée d'Europe
Objet : " Une Éducation Technologique Innovante, Créative, en mode StartUP !"
Lettre à Monsieur François HOLLANDE
Président de la république

Objet : "Développons des Universités de Technologie dans les villes moyennes !"
Lettre à Madame Najat VALLAUD-BELKACEM
Ministre de l'éducation nationale, de l'Enseignement Supérieur et de la Recherche

Objet : "Une association innovante au service de la refondation et du socle commun !"
Rencontre Michel LUSSAULT
Président du Conseil supérieur des programmes

Objet : " Une éducation Technologie au service de la refondation et du socle commun !"
Soutenir l'action de l'association TÉC via helloasso 10€ 100€ 1000€... Don déductible à 66%
Merci à ReadSpeaker pour la vocalisation de notre portail
Index / Les programmes du cycle des approfondissements (cycle 4) / Volet 3 : les enseignements : La Technologie

La modélisation et la simulation des objets et systèmes techniques -

(713 mots dans ce texte ) -  lu : 8537 Fois


Dans les activités scientifiques et technologiques, le lien est indissociable et omniprésent entre la description théorique d’un objet et sa modélisation, la simulation et l’expérimentation. En technologie, les modélisations numériques et les simulations informatiques fournissent l’occasion de confronter une réalité virtuelle à la possibilité de sa réalisation matérielle et d’étudier le passage d’un choix technique aux conditions de sa matérialisation. Les activités de modélisation et de simulation sont des contributions majeures pour donner aux élèves les fondements d’une culture scientifique et technologique.
Dans cette thématique, la démarche d’investigation est privilégiée et une attention particulière est apportée au développement des compétences liées aux activités expérimentales.

Attendus de fin de cycle

  • Analyser le fonctionnement et la structure d’un objet.
  • - Utiliser une modélisation et simuler le comportement d’un objet.

Connaissances et compétences associées

Exemples de situations, d’activités et de ressources pour l’élève

Analyser le fonctionnement et la structure d’un objet

Respecter une procédure de travail garantissant un résultat en respectant les règles de sécurité et d’utilisation des outils mis à disposition.

-  Procédures, protocoles.

-  Ergonomie.

Les activités expérimentales ont pour objectif de vérifier les performances d’un objet technique et de vérifier qu’elles sont conformes au cahier des charges.

Associer des solutions techniques à des fonctions.

- Analyse fonctionnelle systémique.

 

Analyser le fonctionnement et la structure d’un objet, identifier les entrées et sorties.

-  Représentation fonctionnelle des systèmes.

-  Structure des systèmes.

-  Chaîne d’énergie.

-  Chaîne d’information.

Les activités de montage et de démontage permettent de comprendre l’architecture et le fonctionnement d’un objet technique.

Identifier le(s) matériau(x), les flux d’énergie et d’information sur un objet et décrire les transformations qui s’opèrent.

-  Familles de matériaux avec leurs principales caractéristiques.

-  Sources d’énergies.

-  Chaîne d’énergie.

-  Chaîne d’information.

Les matériaux utilisés sont justifiés et les flux d’énergie et d’information sont repérés et analysés. Des notions sur les matériaux organiques et leurs usages sont abordées dans une approche systémique globale.

Décrire, en utilisant les outils et langages de descriptions adaptés, le fonctionnement, la structure et le comportement des objets.

- Outils de description d’un fonctionnement, d’une structure et d’un comportement.

Diagrammes, graphes. Logiciels de CAO

Mesurer des grandeurs de manière directe ou indirecte.

-  Instruments de mesure usuels.

-  Principe de fonctionnement d’un capteur, d’un codeur, d’un détecteur.

-  Nature du signal : analogique ou numérique.

-  Nature d’une information : logique ou analogique.

-  Consommation énergétique des objets du quotidien, notamment les objets numériques.

Une réflexion doit être menée entre les résultats de mesure et le contexte de leur obtention.

Les élèves doivent être sensibilisés à l’adéquation entre les grandeurs à mesurer et les instruments de mesure.

La sensibilisation à l’énergie nécessaire au fonctionnement des objets du quotidien pourra être développée par comparaison d’ordres de grandeur d’énergie consommée dans les situations de la vie courante.

Interpréter des résultats expérimentaux, en tirer une conclusion et la communiquer en argumentant.

- Notions d’écarts entre les attentes fixées par le cahier des charges et les résultats de l’expérimentation.

Utiliser une modélisation et simuler le comportement d’un objet

Utiliser une modélisation pour comprendre, formaliser, partager, construire, investiguer, prouver.

-  Outils de description d’un fonctionnement, d’une structure et d’un comportement.

Simuler numériquement la structure et/ou le comportement d’un objet. Interpréter le comportement de l’objet technique et le communiquer en argumentant.

-  Notions d’écarts entre les attentes fixées par le cahier des charges et les résultats de la simulation.

La modélisation volumique pour des objets techniques simples peut être exigée. En revanche, la modélisation pour étudier le comportement d’un objet technique ne peut être exigée.

Diagrammes, graphes. Logiciels de CAO.


Repères de progressivité
Un modèle numérique est une représentation virtuelle d’un objet technique, réalisée en vue de valider des éléments de solutions préalablement imaginés ou d’en étudier certains aspects. Il ne s’agit pas « d’apprendre des modèles » mais d’apprendre à utiliser des modèles, voire à créer un modèle géométrique.
Dans un premier temps, les activités de modélisation seront conduites sur des objets techniques connus des élèves. On privilégiera tout d’abord les modèles à valeur explicative puis les modèles pour construire.

En fin de cycle, l’accent sera mis sur les hypothèses retenues pour utiliser une modélisation de comportement fournie et sur la nécessité de prendre en compte ces hypothèses pour interpréter les résultats de la simulation. Il sera pertinent de montrer l’influence d’un ou deux paramètres sur les résultats obtenus afin d’initier une réflexion sur la validité des résultats.

Autres publications de la sous-rubrique5